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where I'(z) is the gamma function. One sees that the antisym-
metric field (/;) corresponds to terms decreasing roughly as
p~3*!, while the symmetric part (I;) corresponds to terms as
P17t As (B4) gives ¢ near unity, especially for low ¢, one cannot
‘neglect the antisymmetric part. We retained the two kinds of
terms in our calculation.
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Improved Accuracy for Commensurate-Line Synthesis

JAMES KOMIAK, STUDENT MEMBER, IEEE, AND
HERBERT J. CARLIN, FELLOW, IEEE

Abstract—By employing a simple transformation that preserves
numerical accuracy, improved precision is obtainable using a Richards’
extraction technique to obtain characteristic impedances of commensurate
transmission-line structures. Furthermore, reduced sensitivity to co-
efficient truncation can result in computational savings.

In this short paper, we would like to report on certain aspects
of the numerical calculation of characteristic impedances of
cascaded commensurate-line networks. If correctly employed,
Richards® extraction can be an extremely simple yet powerful
and well-behaved algorithm. If misapplied, it can create large
numerical inaccuracies.

The most important application of commensurate-line
synthesis has been to problems of insertion loss design. The
prescribed problem is typically the realization of a transducer
gain function

_ 12y\n
5231(M)s21(—4) = %_('ATz))
nl— 1=iQ

where P, is an even polynomial of degree 27 and the transformed

= |s2: GO (D)
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frequency variable is

Z + jQ = A = tanh pr, p =0+ jo

where o is radian frequency.! For example Levy [1] gives
commensurate-line characteristic impedances for low-pass
Chebychey filter transducer gain functions. We here consider the
numerical synthesis of arbitrary (but realizable) transducer gain
functions, for example low-pass or bandpass filters, broad-band
transformers, delay lines with amplitude selectivity, equalizers,
matching networks, etc.

Considering a lossless reciprocal 2 port in the A domain, the
unitary requirement demands that the resistively terminated
2 port have an input reflection factor s,,(1) satisfying

511D (=D = 1 = 53,(Ds21(= D320 = s, G2

The function s, ,(4) is found by choosing the appropriate numer-
ator and denominator root factors. The denominator must be
Hurwitz but there is generally considerable flexibility in the choice
of numerator roots, as well as a choice of a + sign. Our task is
to consider a suitable numerical method to determine the
characteristic impedances of the structure, once s;;(4) has been
given. We can of course proceed directly to the use of Richards’
theorem for extracting the lines, given s,,(4) the input reflection
factor of the resistively terminated cascade. However, this can
lead to large numerical errors.

Our technique is to numerically operate on the input reflection
factor s, () of the resistively terminated cascade in a manner that
preserves numerical accuracy and yields the reflection factor of
the cascade of lines terminated in a short or open circuit rather
than in a resistance. We have found that synthesizing this lossless
function by Richards’ theorem is superior numerically to making
the line extraction calculations directly on s;1(4). In the latter
case we deal with a two-element-kind network, whose input
impedance is complex at real frequencies. If we use the lossless
reflection factor, we deal with a purely reactive unit element
network,

Separate the numerator and denominator terms of sl ,(4) into
even and odd parts

k() + ho(A)

51,(A) = . 2
YT 0+ 0
The reflection factors of the unterminated cascade are then
_ (go + ho) - (ge - he)
1s = (3)
(g, + ho) + (g. — ko)
e + he — Yo T ho
51y = (g ) — (g ) @
(ge + he) + (go - ho)
(g9, + h,) — (go + k)
S5 = (5)
2 (go + ko) + (g + B
(ge - he) - (go - ho)
Sp0 = . 6)
2 (g = he) + (95 — ho) ¢

Here s, and s, are the reflection factors at port 1 when the
opposite port is short or open circuited, respectively, and s,, and
55, are similarly defined at port 2. These relations are generally
valid starting with any resistively terminated reactance 2 port,
e.g., interdigital filters, but must be slightly modified if 5,,(0) =

1 ) = coth pr may be used equally well.
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0. The latter case does not arise when the 2-port is a cascade of
unit elements. Coefficient subtractions, which can lead to re-
duced numerical accuracy may be completely avoided in four
specific cases and then the choice of which of the four above
reflection factors to synthesize by Richards’ extractions is clear.
We note that since the denominator of s,,(1) is Hurwitz, g, and
g, are polynomials with positive coefficients. If the numerator
polynomial of s,,(4)s;;(—4) is factored to put all the roots of
511(4) in the left-half plane (LHP), then the numerator poly-
nomial has all its coefficients of the same sign. If the factorization
is chosen to put all the numerator roots in the right-half plane
(RHP), the coefficients of descending powers of A alternate in
sign. Hence to avoid subtractions in these cases, use the following
table. There are four cases because of the (+) sign.

Location of Zeros Sign of Coefficients in s;;(4)  Use Function

of 81 l(l) he ho
LHP + + $2s
RHP + - S1o
RHP - + S1s
LHP - z Sa

If a numerator factorization of s,(2) is chosen which has both
left- and right-half plane roots, we choose the reflection factor
which gives the least number of subtractions and/or avoids
subtractions of coefficients whose magnitudes are close
numerically.

In the process of synthesis of any of the lossless refiection
factors by Richards’ theorem we should get cancellation of exact
(1 + A) factors. Numerically, we simply delete the remainder

213

errors, i.e., assume exact cancellation at each step, and term this
process in the program “remainder truncation.” Employing a
straightforward Richards’ extraction [2] on the appropriate
function of (3), (4), (5), or (6) with remainder truncation, we
arrive at a cascaded line realization. The programn is simple
enough that a routine for extracting up to five lines has been
written for the HP-25 calculator,

As a yardstick of performance gains that can be expected by
utilizing this transformation, the matrix reduction technique
proposed by Youla et al. in [4] was used on s;,(4). This avoids
the matrix inversion procedure necessary in {31].

Tables I-III show typical results obtained on a wide variety of
data for a series of ten line prototype filters. On well-behaved
wide-band data as in Table I our simple technique of using
Richards’ theorem on the appropriate reflection factor (s, ,) of the
lossless system produced similar accuracy when compared to the
matrix factorization technique applied to s;,(4), both methods
employing double precision arithmetic. Reduced sensitivity to
coefficient truncation for this well-behaved data allowed use of
single precision arithmetic in our Richards’ extraction process
on $§;4(4) with a maximum error of 4.1 percent in line 10. On ill-
conditioned, narrow-band data the improvement in using
Richards’ theorem on the appropriate lossless reflection factor
versus matrix factorization applied to s, ;(4) was remarkable. On
these examples the modified Richards’ technique was clearly
superior by a significant margin (Tables II, III).

The simple Richards’ procedure proposed here allows us to
expect a minimum of six digit accuracy on narrow-band data and
ten digit accuracy on wide-band data. The more complicated

TABLE I
WIDE-BAND DATA (LOW-PAss FILTER)

Low Pass Filter

Zg = 1.0 Z, =2.9779
$,;(\) Coetficients®
S SRS AR S NOL A IS RS IR S R SO IR SO RS O
Numerator 1217 | =136.2 | 209.2 |-15L.8 |11 8 |-52.45| 2L 75 | 6,072 | 1,298 | -. 165 |. 0105
Denominator 121,7] 167.9 | 248.8 | 206.7 |152.6 | 79.44 | 33.76 | 10.31 | 2.29 | .316 |.0211
NORMALIZED ERROR
Extracted Matrix Modified Data Modified Data Normalized
Line Reduction Richards! Richards! Nominal
Double Precision Extraction? Extraction® Characteristic
(Ref, T47) Double Precision Single Precision Impedances

1 0 - 17 x 10715 .69 x10"° 1.26

2 -.20x 10715 .98 x1071¢ - 31x 1075 0.566

3 - 17x 10713 .22 x 10714 ..27x 1074 2.33

4 .17 x 10712 L34x 10713 - 14 x 1073 0.387

5 14 x 10710 15 %1072 -50x 1072 2,79

6 -.57x 1010 . 65 x 10712 -.10 x 1072 0.355

7 -.55 x 10730 -25 x 10713 -~ 13 x 1072 2.92

8 .45 x 10710 .99 x 10711 - 13 x 1072 0,346

9 L1ax 1077 - 73 % 10710 . 13x 1072 2,97

10 .87 x 10710 .64 x 1077 — 13 x 1072

0,343

2 Uses s4,, Open circuit reflection factor of front end. .
® Actual data, 16 decimal places. The coefficients of A*° differ slightly.
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TABLE 1I
NARROW-BAND DATA, SYMMETRIC CASE (BAND ELIMINATION FILTER)?

S 1 1()\) Coefficients®

N EE ARG B ERS A3 A2 X U
Numerator -.3x 1072 [665.3| 0.03L5 J-3x 1074|5096 <. 1x 10%°] 2,75 x 1073 | «.1x1077 1, 3x107° | .15 x 10720
Denominator . 15x 107|665, 3 [257. 8 [s1.5 | 16,4 2.61| .308 . 028 .76 1073 [7.3x1075 | .15 x 1078
NORMALIZED ERROR
Extracted Line Matrix Reduction Modified Data Normalized
Double Precision Richards' Extraction Nominal
(Ref. [47) Double Precision Characteristic Impedances
.42 x 10716 .13 x 10718 5,27
2 - .s2x10"13 L16 x10 713 0,111 °
3 .34x 10720 .25 x10™1! L5
4 . L12x1077 .17 x107? 0.091
5 .21x107° .65 x10°8 12.3
6 - .63x107° .84 x1078 12,3
7 - .36x1073 - .37x107® 0.091
8 .56 x1072 L4 x107® 1,5
9 .92 x10° - .62x10°® 0,111
10 11 - L 15x10™ 5,27
* Courtesy of R. Levy of MDL.
b Uses 5,4(4), short circuit reflection factor of back end. ]
¢ Actual data, 16 decimal places. The coefficients of A® differ slightly.
TABLE III
NARROW-BAND DATA, ANTIMETRIC CASE (Low-Pass FILTER)®
Zg =10 Zy =10
sll(x) Coefficientsd
U SRR R B FU B G S A3 22 A N
Numerator 656, 05 | . 6x1072% 140,45 [ 7x107%] . 873 |-.3x10715] 7.66x1073 | -8 x10717 { 2.37x 1073 |~2x1077 | 0.0
Denominator 656,05 | 254.2 89,71 | 19.78 [3.65 | .506 | 5.64x1072] 4, 74x107% | 2. 94x10~* |1 19x1075 | 2. 4x 1077
NORMALIZED ERROR’
Extracted Line Modified Data Normalized
Richards' Nominal
Extraction’ Characteristic
Double Precision Impedances
1 .73 x 10718 0.190
2 L17x10713 9,04
3 .35 x 1072 0.087
4 .46 x 1077 11.0
5 .32 x 1077 0.081
6 .10x 1070 12.3
7 .12 x 10758 0,091
8 .21x 1075 1.5
9 .98 x 1070 0.111
10 - 17 x 10~ 5,27

2 Uses 5,5(1), short circuit reflection factor of back end.
® For this case, matrix reduction, double precision terminated while
factoring the resistivity matrix because the square root of a negative
number was required due to large errors. '
¢ Courtesy of R. Levy of MDL.
9 Actual data, 16 decimal places. The coefficients of 4'° differ slightly. ’
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programming of the matrix triangulation approach [4] could
also be applied to the transformed lossless reflection factor
functions yielding even greater accuracy. However, it appears that
in practice the simple Richards’ algorithm with remainder
truncation applied to the appropriate lossless reflection factor
data gives excellent results.

ACKNOWLEDGMENT

The authors wish to thank Dr. R. Levy of the Microwave
Development Laboratories, Natick, MA, for his helpful assist-
ance in furnishing some of the data used for our examples.
They also wish to thank Dr. P. Kotireeriah for his help in
programming the matrix reduction technique.

REFERENCES

[1] R. Levy, “Tables of element values for the distributed low-pass proto-
. type filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-13,
pp. 514-536, Sept. 1965.

[2] H.J. Carlin, “Distributed circuit design with transmission line elements,”
Proc. IEEE, vol. 59, pp. 1059-1081, July 1971.

[3]1 D.C. Youla, J. D. Rhodes, and P. C. Marston, “Driving-point synthesis
of resistor-terminated cascades composed of lumped lossless passive
2-ports and commensurate TEM lines,” IEEE Trans. Circuit Theory
(l.sg'gscial Issue on Nonlinear Circuits), vol. CT-19, pp. 648-664, Nov.

[4] J. D. Rhodes, P. C. Marston, and D. C. Youla, “Explicit solution for
the synthesis of two-variable transmission-line networks,”” IEEE Trans.
Circuit Theory, vol. CT-20, pp. 504-511, Sept. 1973.

Differential Phase Shift at Microwave Frequencies Using
Planar Ferrites

M. S. SODHA anp N. C. SRIVASTAVA

Abstract—It is generally believed that planar ferrites are not useful in
differential-phase-shift devices operated below resonance. A configuration
of planar ferrite is suggested, which leads to appreciable differential
phase shift on application of very small magnetic fields.

The planar ferrite has an easy plane of magnetization. A small
external magnetic field directed along some axis (z axis) in this
plane saturates the sample magnetically. The nonunit diagonal
components u,, and u,, of the permeability tensor are unequal
[1]. The planat ferrites, when used in devices operating in Q
and X bands, need the application of very small magnetic fields.

Bady [1, p. 59] stated that “...planar ferrites are not as
desirable as isotropic ferrites . ..” in operation below resonance
because the change in susceptibility is small. In his case the
easy plane yz (see Fig. 1) was in the plane of the slab and con-
tained the direction of propagation y. It is shown in the following
discussion that much higher differential phase shift can be
achieved by orienting the easy plane normal to the direction of
propagation.

Consider a thin slab of transversely magnetized ferrite, kept

in a waveguide supporting only the dominant mode propagating '

along the y axis. The direction of magnetization is along the
z axis. The broad face of the slab is normal to the x axis. The
width of the guide along x axis is L, the distance of the slab
from the sidewall at x = 0 is ¢ and the slab thickness is d. With
Iy NOt necessarily the same as u,,, an approximate expression
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X — L

Fig. 1. A single planar ferrite slab in a rectangular waveguide of internal

width L.

for the differential phase shift can be obtained [2] as follows:
By — B = — s K sin 2ra/L 1)
Lz XX

where §, and B_ are the propagation constants for the forward
and the reverse propagation, K is the modulus of the off-diagonal
element of the permeability tensor, and /L ~ 0.01 or so.

For a differential phase shifter using an isotropic ferrite slab
(case 1), sy, = p,, and (1) takes the familiar form [2]

2nd o - 4nM, [y

b = b- = T2 Hy(H, + 4nMy) — 0¥y

5 sin 2na/L

(2)

where w, M, and H, are the operating frequency, saturation
magnetization, and the applied magnetic field, respectively.
y is the gyromagnetic ratio to be taken as 1.76 x 107 rad/s.

For a differential phase shifter with the plane yz as the easy
plane (case 2)

By — B-

_ _2m, @ - 4xMofy
> Hy(H, + H, + 4nM,) — w?[y*

sin 2ra/L (3)

where H, is the anisotropy field and H, is the applied field, not
necessarily the same as that in (2).

The ferrite phase shifters are normally operated below
resonance to avoid attenuation. When the applied field is small,
the first term in the denominators of (2) and (3) can be neglected
in comparison with the second, and thus insignificant differential
phase shifts result in both cases at relatively high frequencies.

The performance of a phase shifter using planar ferrite can be
improved very much by orienting the easy plane normal to the
direction of propagation (case 3). The expression for the
differential phase shift assumes the following form:

ﬁ+ - ﬂ—
275 o - 4nMyly
L2 (Ho + 47TM0)(H0 + Ha) - CDZ/V

o sin 2na/L.

(4)

When M, and H, are chosen suitably, considerably large
differential phase shift can be obtained even when H,, is small.

Normalized differential phase shift for the three afore-
mentioned cases has been plotted in Fig. 2. It is obvious that
maximum differential phase shift is obtainable in case 3 for small
magnetic fields. However, in case 3 one would like to avoid the
region H, > 0.5 kOe to keep away from resonance.

One disadvantage of the configuration used in case 3 is an
overdependence of differential phase shift on the material



