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where r(z) is the gamma function. One sees that the antisym-

metric field (11) corresponds to terms decreasing roughly as

– 3+ c, while the symmetric part (12) corresponds to terms as
~-1 – t. AS (B4) givestnearunity, especially for low C, one cannot

‘neglect the antisymmetric part. We retained the two kinds of

terms in our calculation.
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Improved Accuracy for Commensurate-Line Synthesis

JAMES KOMIAK, STUDENT MEMBER, IEEE, AND
HERBERT J. CARLIN, FELLOW, IEEE

Abstract—By employing a simple transformation that preserves

numerical accuracy, improved precision is obtainable using a Richards’

extraction teehnique to obtain characteristic impedances of commensurate

transmission-line structures. Furthermore, reduced sensitivity to co-
efficient truncation can result in computational savings.

In this short paper, we would like to report on certain aspects
of the numerical calculation of characteristic impedances of
cascaded commensurate-line networks. If correctly employed,
Richards’ extraction can be an extremely simple yet powerful
and well-behaved algorithm. If misapplied, it can create large
numerical inaccuracies.

The most important application of commensurate-line
synthesis has been to problems of insertion loss design. The
prescribed problem is typically the realization of a transducer
gain function

(1 – a’y
s21(a)s~l(–a) = = \s,l(jK_2)\2 (1)

Pn(– AZ) ~=jQ

where Pn is an even polynomial of degree 2n and the transformed

frequency variable is

Z +jS2 = L = tanhpr, p=cr+jw

where co is radian frequency. 1 For example Levy [1] gives
commensurate-line characteristic impedances for low-pass
Chebychev filter transducer gain functions. We here consider the
numerical synthesis of arbitrary (but realizable) transducer gain
functions, for example low-pass or bandpass filters, broad-band
transformers, delay lines with amplitude selectivity, equalizers,
matching networks, etc.

Considering a lossless reciprocal 2 port in the A domain, the
unitary requirement demands that the resistively terminated
2 port have an input reflection factor SI~(1) satisfying

~ll(l)sll(–a) = 1 – ‘S2~(J’).$’2~(-i)l~zcj* = lsll(.K2)12.

The function .rI 1(2) is found by choosing the appropriate numer-

ator and denominator root factors. The denominator must be

Hurwitz but there is generally considerable flexibility in the choice

of numerator roots, as well as a choice of a ~ sign. Our task is

to consider a suitable numerical method to determine the

characteristic impedances of the structure, once SI ~(1) has been

given. We can of course proceed directly to the use of Richards’

theorem for extracting the lines, given SI ~(1) the input reflection

factor of the resistively terminated cascade. However, this can

lead to large numerical errors.

Our technique is to numerically operate on the input reflection

factor SI ~(1) of the resistively terminated cascade in a manner that

preserves numerical accuracy and yields the reflection factor of

the cascade of lines terminated in a short or open circuit rather

than in a resistance. We have found that synthesizing this lossless

function by Richards’ theorem is superior numerically to making

the line extraction calculations directly on SI ~(l). In the latter

case we deal with a two-element-kind network, whose input

impedance is complex at real frequencies. If we use the lossless

reflection factor, we deal with a purely reactive unit element

network.

Separate the numerator and denominator terms of SI ~(A) into

even and odd parts

h,(~) + hO(A)
s~~(a) = (2)

&(J) + %(a) “

The reflection factors of the unterminated cascade are then

(90 + %) – (a? – h.)
(g. + ho) + (g, – he)

(9. + k?) – (9. – k))
(9. + ~e)+ (90 – M

(3)

(4)

(90 ‘+ w – (a. + M

(go + ~.) + (ge + M
(5)

(9, – u – (90 – %)

(9. – M + (9. – h) “
(6)

Here s,, and s,. are the reflection factors at port 1 when the.- ..
opposite port is short or open circuited, respectively, and Sz, and
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0. The latter case does not arise when the 2-port is a cascade of
unit elements. Coefficient subtractions, which can lead to re-
duced numerical accuracy may be completely avoided in four
specific cases and then the choice of which of the four above
reflection factors to synthesize by Richards’ extractions is clear.
We note that since the denominator of SI~(1) is Hurwitz, g, and

go are Polynomials with Positive coefficients. If the numerator
polynomial of SI~(l)sl I( – A) is factored to put all the roots of
SI~(1) in the left-half plane (LHP), then the numerator poly-
nomial has all its coefficients of the same sign. If the factorization
is chosen to put all the numerator roots in the right-half plane
(RHP), the coefficients of descending powers of 1 alternate in
sign. Hence to avoid subtractions in these cases,use the following
table. There are four cases because of the ( ~ ) sign.

Location of Zeros Sign ;f Coefficients i;s, ,(A) Use Function
of s,,(l) e o

LHP + + S2,
RHP + — Slo
RHP — + .$1s
LHP — —

S20

If a numerator factorization of SI ~(1) is chosen which has both

left- and right-half plane roots, we choose the reflection factor

which gives the least number of subtractions andlor avoids

subtractions of coefficients whose magnitudes are close

numerically.

In the process of synthesis of any of the lossless reflection

factors by Richards’ theorem we should get cancellation of exact
(1 ~ 1) factors. Numerically, we simply delete the remainder

errors, i.e., assume exact cancellation at each step, and term this
process in the program “remainder truncation.” Employing a
straightforward Richards’ extraction [2] on the appropriate
function of (3), (4), (5), or (6) with remainder truncation, we
arrive at a cascaded line realization. The program is simple
enough that a routine for extracting up to five lines has been
written for the HP-25 calculator.

As a yardstick of performance gains that can be expected by
utilizing this transformation, the matrix reduction technique
proposed by Youla et al. in [4] was used on S1~(l). This avoids

the matrix inversion procedure necessary in [3].

Tables I–III show typical results obtained on a wide variety of

data for a series of ten line prototype filters. On well-behaved

wide-band data as in Table I our simple technique of using
Richards’ theorem on the appropriate reflection factor (sIJ of the

lossless system produced similar accuracy when compared to the

matrix factorization technique applied to SI ~(1), both methods

employing double precision arithmetic. Reduced sensitivity to

coefficient truncation for this well-behaved data allowed use of

single precision arithmetic in our Richards’ extraction process

on SIO(I) with a maximum error of 4.1 percent in line 10. On ill-

conditioned, narrow-band data the improvement in using

Richards’ theorem on the appropriate lossless reflection factor

versus matrix factorization applied to SI ~(1) was remarkable. On

these examples the modified Richards’ technique was clearly

superior by a significant margin (Tables II, III).

The simple Richards’ procedure proposed here allows us to

expect a minimum of six digit accuracy on narrow-band data and

ten digit accuracy on wide-band data. The more complicated

TABLE I
WIDE-BAND DATA (LOW-PASS FILTER)

+
Low Pass Filter

‘G
=1.0 z = = 2.9779

S1l(A) Coefficients b

~lo
L’ La k’ h’ h’ k’ ~3 ~z ~ h“

Numerator 121.7 -136.2 209.2 -151.8 111.8 -52.45 21.75 -6.072 1.298 -.165 .0105

Denominator 121, 7 167.9 248.8 206.7 152.6 79.44 33.76 10.31 2.29 .316 .0211

NORMALIZED ERROR

Extracted Mat rix Modified Data Modified Data Normalized

Line Reduction Richards ! Richards! Nominal
Double Precision Extractiona Extractiona Characteristic

(Ref. ~4] ) Double Precision Single Precision Impedances

1 0 -.17 x 10-15 -.69 X 10-6 1.26

2 -.20 ,% 10-15 -.98 X 10-16 -.31 x 10-5 0.566

3 -.17 x 10-13 .22 x 10-14 -.27 X 10-4 2.33

4 .17X1O
-12

. 34 x 10-13 -.14 x 10 -3 0.387

5 .14 x 10-10 .15X1O
-12

-.50 x 10-3 2.79

6 -.57 x 10-10 .65 X 10-12 -.10 x 10
.2 0.355

7 -. 55x 10-10 -.25 x 10-13 -. 13 x 10 -2 2.92

8 -.45 x 10
-10

.99x 10-11 -.13 x 10-2 0. ‘4’

9 -9 -10 -2.14XI0 -.73 x 10 -.13 x 10 2.97

10 . S7 x 10JO .64 X 10-9 -.13 x 10
.2

0.343

a Uses s,., open circuit reflection factor of front end.
b Actual data, 16 decimal places. The coefficientsof110 differ slightly.
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TABLE II
NARROW-BAND DATA, SYMMETRIC CASE (BAND ELIMINATION FILTERy

ZG. l.O ‘L
=1.0

S ~ ~(k) Coefficientsc

~lo
k’ k’ A6 A’ k’ 1’ x’

Numerator -.3 x 10-14 ::5.3 0.0 3L5, -3X 10-14 .5096 :.1X1O 45 2.75 x 10-3 -.1 x 10-” L 3:10-5 .15”:10-20

Denominator . 15x 10-15 665, 3 257.8 ‘L 5 16.4 2.61 .308 .028 1.76 X 10-3 7.3 X1O-5 .15 x 10-’

NORMALIZED ERROR

Extracted Line Mat rix Reduction Modified Data Normalized
Double Precision Richards 1 Extractionb Nominal

(Ref. [4] ) Double Precision Characteristic Impedances

1
2

3

4

5

6

7

8

9

10

.42 x 10-16

- .52 X 10-13

.34XI0
-10

- .12 x 10-’

.21 X1O-5

- .63 X 10-5

- .36 X10-3

.56 X 10-2

.92 XIO-l

.11

.I3X1O -15

.16x1o -13

.25xlO -11

.17XI0 -9

.65 X 10-8

.84 X 10-8

- .37X1O -6

.41X1O -6

- . 62X 10:6

- .15 x 10-5

5.27

0. 111

11.5

0.091

12.3

12.3

0.091

11.5

0.111

5.27

a Courtesy of R. Levy of MDL.
b Uses sz,(~), short circuit reflection factor of back end.
c Actual data, 16 decimal places. The coefficients of A’ differ slightly.

TABLE III
NARROW-BAND DATA, ANTIMETRIC CASE (LOW-PASS FILTER)”

A

t

10
kg—

Numerator 656.05 . 6X10-13

Denominator 656.05 254.2

‘G
=1.0

‘L
=1.0

S1 ~(A) Coefficientsd

k’ X7 A6 _ A5 A4 L3 AZ
LO

40.45 7x 10-14 .873 -.3 X1O-15 7. 66x 10-3 ‘-. 8 XIO-17 2. 37x 10-5 *2 :10-’9 0.0

89.71 19.78 3.65 .5o6 5. 64x 10-2 4. 74x 10-3 2. 94x 10-4 1.19 X1O-5 2.4x 10-’

NORMALIZED ERR ORb

Extracted Line Modified Data Normalized
Richards 1 Nominal

Extractiona Characteristic
Double Precision Impedances

1

2

3

4

5

6

7

8

9

10

.73X1O
-15

.17 x 10-1’

.35 x 10-11

.46 X 10-9

.32 X 10-7

.10 x 10-’

.I2X1O -5

.21 x 10-5

.98 X 10-6

-.17 x 10-6

0.190

9.04

0.087

11.0

0.081

12.3

0.091

11.5

0.111

5.27

a Uses s,,(2), short circuit reflection factor of back end.
b For this case? matrix reduction, double precision terminated while

factoring the reslstivity matrix because the square root of a negative
number was required due to large errors.

c Courtesy of R. Levy of MDL.
d Actual data, 16 decimal places. The coefficientsof110 differ slightly.
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programming of the matrix triangulation approach [4] could
also be applied to the transformed Iossless reflection factor
functions yielding even greater accuracy. However, it appears that

in practice the simple Richards’ algorithm with remainder
truncation applied to the appropriate Iossless reflection factor
data gives excellent results.
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Differential Phase Shift at Microwave Frequencies Using

Planar Ferrites

M. S. SODHA AND N. C. SRIVASTAVA

Abstract—It is genera~y believed that planar ferrites are not useful in

differential-phase-shift devices operated below r&sonance. A configuration

of planar ferrite is suggested, which Ieails to appreciable differential

phase shift on application of very small magnetic fields.

The planar ferrite has an easy plane of magnetization. A small

external magnetic field directed along some axis (z axis) in this

plane saturates the sample magnetically. The nontmit diagonal

components y.. and uYY of the permeability tensor are unequal

[1]. The planat ferrites, when used in devices operating in Q

and K bands, need the application of very small magnetic fields.

Bady [1, p. 59] stated that “. . . planar ~errites are not as

desirable as isotropic ferrites. . . “ in operation below resonance

because the change in susceptibility is small. In his case the

easy plane yz (see Fig. 1) was in the plane of the slab and con-

tained the direction of propagation y. It is shown in the following

discussion that much higher differential phase shift can be

achieved by orienting the easy plane normal to the direction of

propagation.

Consider a thin slab of transversely magnetized ferrite, kept

in a waveguide supporting only the dominant mode propagating

along the y axis. The direction of magnetization is along the

z axis. The broad face of the slab is normal to the x axis. The

width of the guide along x axis is L, the distance of the slab

from the sidewall at x = O is a and the slab thickness is d. With

g~~ not necessarily the same as uYY, an approximate expression

Fig. 1. A single planar ferrite sl;~d~h ~rectangular waveguide of internal

for the differential phase shift can be obtained [2] w follows:

(1)

where ~+ and ~_ are the propagation constants for the forward

and the reverse propagation, K is the modulus of the otT-diagonal

element of the permeability tensor, and c$/L H 0,01 or so.

For a differential phase shifter using an isotropic ferrite slab

(case 1),,% = ,aY, and (1) takes the familiar form [2]

(2)

where co, k?o, and Ho are the operating frequency, saturation

magnetization, and the applied magnetic field, respectively.

y is the gyromagnetic ratio to be taken as 1,76 x 107 rad/s.

For a differential phase shifter with the plane yz as the easy

plane (case 2)

B+ - B-

2rr6 co . 4rzMo/y___ .
L2 HO(HO + Ha + 4rcMo) – @2/y2

sin 2rca/L (3)

where H. is the anisotropy field and Ho is the applied field, not
necessarily the same as that in (2).

The ferrite phase shifters are normaily operated below
resonance to avoid attenuation. When the applied field is small,
the first term in the denominators of (2) and (3) can lbe neglected

in comparison with the second, and thus insignificant differential

phase shifts result in both cases at relatively high frequencies.

The performance of a phase shifter using planar ferrite can be

improved very much by orienting the easy plane normal to the

direction of propagation (case 3). The expression for the

differential phase shift assumes the following form:

27rd co . 4rcMo/y.— — —. sin 2rca/L.
L2 (H. + 4rcMo)(Ho + Ha) – @2/yi

(4)

When M. and Ha are chosen suitably, considerably large

differential phase shift can be obtained even when Ho is small.

Normalized differential phase shift for the three afore-

mentioned cases has been plotted in Fig. 2. It is obvious that
maximum differential phase shift is obtainable in case 3 for small
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